Architectures and protocols aiming to reduce power consumption of ICT networks

Study mode:On campus Study type:Part-time Languages: English
Local:$ 5.02 k / Year(s) Foreign:$ 18.5 k / Year(s)  
160 place StudyQA ranking:4589 Duration:12 months

Photos of university / #universityofleeds

Studying for an MA or MSc by Research (MbR) can be an excellent opportunity to develop your intellectual skills and your academic interest in a particular field, and to help you stand out from the crowd as a self-motivated, independent thinker. This is distinct from our Taught Masters programmes.

The MbR is a 12-month research project (24 months part time). It can be suitable for:

  • Recent graduates who wish to follow up their first degree with more in-depth study of a particular field of interest
  • Candidates looking to go on to study for a PhD, but who want to develop their skills and try out full-time research first
  • Mid-career candidates who are currently employed, for instance in education, local government, or environmental consultancy, who want a continuing professional development opportunity that allows them to analyse and reflect on a particular aspect of their career from an academic perspective
  • Those who wish to develop their passion for an aspect of geography with the freedom to develop their own project

As a research masters student you will have regular meetings with your supervisors; access to research student training courses; and the option to sit in on taught masters modules (not for assessment or credit). You will join a large and dynamic community of research students in one of the UK's top Geography departments.

The MbR is assessed by a thesis of up to 30,000 words, and by an oral examination. One key learning outcome of the MbR is that your research should be of a publishable standard, and once you have passed your exam we will offer advice about preparing your work for publication.

Projects

A short list of possible topics is provided below but you are also free to propose your own topic. We will consider any topic within human or physical geography, provided it can be supervised by one of our staff. Click on the “People” tab on the homepage of the appropriate Research Cluster you are interested in http://www.geog.leeds.ac.uk/research/

Please also see available PhD topics as many of these are also suitable for an MA/MSc by Research.

MA/MSc (by Research): suggested topics

All of these topics will require further development and to be written up as a full research proposal when applying. You are also welcome to discuss your own ideas with an appropriate member of staff.

1) Wild land, wild places: developing multiscale spatial modelling approaches to wilderness in Europe

Dr Steve Carver

This project will work with multiple datasets, across multiple spatial scales and with multiple agencies to develop spatial modelling/GIS approaches to wilderness allocation and inventory that is sensitive to spatial setting (wild, remote, rural, peri-urban), biophysical landscapes (upland, lowland, forest, coast, marine) and cultural contexts. The project will build on existing work on wilderness quality mapping across Europe, the UK, Scotland and the Scottish National Parks to develop spatially explicit approaches to identifying wild land (large areas typically possessing the full range of wilderness characteristics of remoteness and naturalness) and wild places (smaller areas or sites that are perhaps close to urban areas yet are relatively natural and so are important sites for both people and wildlife). The results will feed into regional, national and local policy decision making on nature conservation, connectivity management and development planning.

2) Carbon storage in Yorkshire peatlands

Dr Sheila Palmer

Our uplands store significant amounts of carbon as organic matter in peaty soil but our ability to accurately quantify and map the amount of carbon stored is limited by the lack of data at appropriate spatial resolution. This project will use a combination of GIS mapping, statistical and geospatial analysis of existing spatially detailed information in order to: i) estimate the total carbon stored in upland peat; and ii) determine whether key parameters such as depth and bulk density can be estimated from more readily obtained proxies. Some field sampling may be required to improve data records. The aim of this project is to produce a map(s) of carbon storage at two locations in Yorkshire for which detailed information on peat depth and carbon content exists, and to evaluate findings alongside existing estimates based on national soil maps.

3) A Holocene proxy climate record from a peatland in the most northerly island of Britain

Dr Graeme Swindles

The Shetland Isles are particularly sensitive to changes in North Atlantic climate. The aim of this project is to generate a new high-resolution multiproxy climate record from a core taken from an ombrotrophic peat bog in Unst, Shetland Isles. A suite of methods for peatland palaeoclimate reconstruction will be used to generate proxy climate data from the peat sequence (plant macrofossils, humification and testate amoebae). This will provide a baseline Holocene palaeoclimate record which, together with archaeological evidence, will be used to examine human sensitivities and responses to long-term climatic change in this marginal environment.

4) What controls carbon cycling in marine sediments?

Dr Clare Woulds

The burial of organic carbon in marine sediments is a key flux in the global carbon cycle, and represents one of the only mechanisms for sequestering carbon on geological timescales. The problem is that many interdependent factors combine to control the efficiency with which carbon is buried. The lest well understood factor is the activity of sediment-dwelling communities. This project will involve processing and analysing samples from isotope enrichment experiments conducted in two contrasting Scottish estuaries. The data will allow construction of short-term carbon budgets, which will reveal how factors including sediment type and oxygen availability influence the biological processing of organic carbon.

5) How forests behave in mountainous landscapes

Dr Ian Lawson

Palaeoecological data show that, in the mountainous landscapes of the Mediterranean, forests have responded to past climate change by moving up and down the mountains, as well as north and south. This project will use a combination of vegetation modelling, climate model outputs, and palaeoecological data, to investigate how topography has conditioned the palaeoecological record at several key sites. The aim of the project is to test and refine our current understanding of the broad-scale pattern of ecosystem response to climate change across the Mediterranean basin.

Entry requirements for these prestigious degrees are higher than for taught masters programmes. You will need at least a UK 2.i honours degree or equivalent. English language requirements are also higher than for taught masters or PhD degrees. You will need to hold one of the following:TOEFL score (internet-based test) of at least 92 overall with at least 21 in listening and reading, 22 in writing and 23 in speakingIELTS (Academic) score of at least 6.5, with at least 6.0 in all componentsPTE (Academic) score of 64, with at least 60 in all componentsNote that, for part-time students who combine their studies with paid employment, their employment should normally be related to the research project they are undertaking. English Language Requirements IELTS band: 6.5 TOEFL iBT® test: 92 IMPORTANT NOTE: Since April 2014 the ETS tests (including TOEFL and TOEIC) are no longer accepted for Tier 4 visa applications to the United Kingdom. The university might still accept these tests to admit you to the university, but if you require a Tier 4 visa to enter the UK and begin your degree programme, these tests will not be sufficient to obtain your Visa. The IELTS test is most widely accepted by universities and is also accepted for Tier 4 visas to the UK- learn more.
Similar programs:
Study mode:On campus Languages: English
Local:$ 6.94 k / Year(s) Foreign:$ 17 k / Year(s)
301–350 place StudyQA ranking: 4247
Study mode:On campus Languages: English
Local:$ 14.9 k / Year(s) Foreign:$ 31.1 k / Year(s)
Deadline: Apr 28, 2024 16 place StudyQA ranking: 2677
Study mode:On campus Languages: English
Local:$ 13.2 k / Year(s) Foreign:$ 28.2 k / Year(s)
Deadline: Mar 10, 2025 1 place StudyQA ranking: 3629
Study mode:On campus Languages: English
Local:$ 8.58 k / Year(s) Foreign:$ 18.9 k / Year(s)
StudyQA ranking: 3730
Study mode:On campus Languages: English
Local:$ 9.09 k / Year(s)
601–800 place StudyQA ranking: 3252
Study mode:On campus Languages: English
Local:$ 9 k / Year(s) Foreign:$ 16.3 k / Year(s)
Deadline: Jan 15, 2025 127 place StudyQA ranking: 2795
Study mode:On campus Languages: English
Local:$ 4.16 k / Year(s) Foreign:$ 13.4 k / Year(s)
Deadline: Jan 15, 2025 200 place StudyQA ranking: 2986
Study mode:On campus Languages: English
Local:$ 10.4 k / Year(s) Foreign:$ 25.9 k / Year(s)
163 place StudyQA ranking: 4189
Study mode:On campus Languages: English
Local:$ 5.56 k / Year(s) Foreign:$ 18.7 k / Year(s)
201–250 place StudyQA ranking: 5048
Study mode:On campus Languages: English
Local:$ 4.16 k / Year(s) Foreign:$ 13.4 k / Year(s)
Deadline: Jan 15, 2025 200 place StudyQA ranking: 2748