Civil Engineering

Study mode:On campus Study type:Full-time Languages: English
91 place StudyQA ranking:8652 Duration:

Photos of university / #universityofbristol



Our multidisciplinary research addresses the global need for delivering long-term, sustainable performance of existing and new infrastructure systems. We are leaders in modelling and managing the impacts of extreme natural and human hazards, such as earthquakes, climate change, flooding, industrial processes, traffic and crowds. Our application studies range in scale from complete national and regional systems such as national hydrological models, water systems, electricity and transport networks, through individual artefacts such as nuclear facilities, dams, long-span bridges and buildings, down to low-cost water quality monitoring devices. Much of the research includes monitoring of prototypes or modelling at large scale, for example, the dynamics of cable-stayed bridges such as the Second Severn Crossing, analysis of deep excavations, and flood prediction based on real-time radar detection of rainfall.

Our three groups collaborate widely with academic and industrial partners from across the engineering, science and social science disciplines, and from around the world.


Research Areas Earthquake and Geotechnical Engineering

This area encompasses structural engineering, advanced composite materials and geomechanics. Based around BLADE (the £20-million Bristol Laboratories for Advanced Dynamics Engineering) and the Earthquake Engineering Research Centre (EERC), the group focuses on the non-linear performance and reliability of civil engineering infrastructure, with an emphasis on dynamic loading. It develops techniques for numerical analysis, physical testing of infrastructure in the field and laboratory structural and geotechnical material behaviour characterisation and modelling, structural vulnerability and overall non-linear dynamic performance assessment. This group is the largest in the UK with an interest in earthquake engineering.

The Earthquake Engineering Research Centre hosts one of Europe's leading academic experimental research facilities in earthquake engineering and structural dynamics. The Centre has made notable advances in several areas including the mechanisms of wind and pedestrian-induced vibrations, the non-linear dynamics of masonry and other buildings (including strengthening and using advanced composites), and the seismic response of large dams. Research in advanced composites links with the Faculty's Advanced Composites Centre for Innovation and Science (ACCIS) and focuses on large-scale testing and advanced theoretical analysis of hybrid structures comprising any combination of conventional construction materials and novel materials, such as limecrete and fibre reinforced polymers, which have significant sustainability benefits for use in buildings and bridges.

The Geomechanics group has an active interest in solving geotechnical problems using a multi-scale approach which combines laboratory testing, constitutive modelling, physical modelling, field observation and numerical simulation. Recent research focuses on measurements of deformation properties of soils using novel techniques of laboratory geophysics at very small strains for stiffness, dynamic soil-structure interaction and foundations of offshore wind turbines. The group also has a strong interest in the characterisation of treated geomaterials: mixtures of soil with various inclusions like fibres, cement, fly ash and soft tire chips. The Soil Mechanics Laboratory possesses a series of triaxial and a unique set of multiaxial soil test apparatus: True Triaxial Apparatus (independent variation of three principal stresses, rigid boundaries), Cubical Cell (independent variation of three principal stresses, flexible boundaries) and Hollow Cylindrical Torsional Apparatus (independent control of four stress variables).

Water and Environment

This area is based around the Water and Environmental Management Research Centre (WEMRC) and the Water and Health Research Centre (WHRC).

The WEMRC addresses the management of water resource risks including floods and droughts, with emphasis on technologies for measurement and modelling of rainfall events and the consequent river flows and environmental impacts. It provides a focus for the study of water management issues in the UK and overseas from a systems point of view. Key expertise exists within the centre in numerical weather prediction modelling, radar hydrology, real-time flood forecasting systems, distributed hydrological modelling for land use management, hydroinformatics, flood risk management and other aspects of risk and uncertainty.

Systems and Safety

The Safety Systems Research Centre develops novel, holistic approaches for characterising and managing the safe and sustainable performance of complex systems, including human factors. Key areas of work include the safety and vulnerability of embedded software systems, systems thinking, sustainable systems, problem structuring methods, and the vulnerability and resilience of infrastructures.

Key research interests Dr Jitendra Agarwal, Civil engineering systems; structural engineering; structural safety; non-linear dynamics.

Dr Nick Alexander, Structural engineering.

Dr Jacopo Ciambella, Composites.

Dr Adam Crewe, Bridges; earthquake engineering; soil dynamics; steel design.

Professor John Davis, Civil engineering systems.

Dr Andreas Diambra, Soil mechanics; computational geotechnics; soil-structure interaction.

Dr Katsu Goda, Earthquake engineering and structures.

Professor Patrick Godfrey, Systems engineering.

Professor Stephen Gundry, Water and health; enterprise and entrepreneurship; engineering management.

Professor Dawei Han, Hydrology; flood risk management; remote sensing; water resources.

Professor Sally Heslop, Engineering education; environmental systems; sustainability.

Dr Liz Holcombe, Slope stability.

Dr Nicholas Howden, Hydrology; hydrogeology.

Dr Erdin Ibraim, Soil mechanics, granular materials, soil reinforcement, advanced soil laboratory testing, soil-structure interaction.

Dr John Macdonald, Bridges; structural dynamics; wind engineering; human-structure interaction.

Dr John May, Safety systems; reliability of digital systems; organisational safety.

Professor George Mylonakis, Earthquake engineering; computational geomechanics; dynamic soil-structure interaction.

Dr David Nash, Field monitoring; geotechnics.

Dr Miguel Rico-Ramirez, Radar hydrology; hydroinformatics; water resources; flood risk management; remote sensing.

Dr Rafael Rosolem, Hydrometeorology; soilvegetation- atmosphere interactions.

Dr Wendel Sebastian, Advanced composites; bridge repair; nonlinear behaviour of structures.

Professor Colin Taylor, Earthquake engineering; field monitoring; structural dynamics.

Dr Theo Tryfonas, Systems engineering; security penetration testing; digital forensics.

Professor Thorsten Wagener, Hydrologic systems; watershed hydrology.

Dr Mohammed Wanous, Engineering management; engineering education.

Dr Ross Woods, Catchment hydrology.

Dr Michael Yearworth, Engineering systems; modelling and intervention in socio-technical systems.


MSc and/or upper second-class honours degree or international equivalent.

English Language Requirements

IELTS band: 6.5

IMPORTANT NOTE: Since April 2014 the ETS tests (including TOEFL and TOEIC) are no longer accepted for Tier 4 visa applications to the United Kingdom. The university might still accept these tests to admit you to the university, but if you require a Tier 4 visa to enter the UK and begin your degree programme, these tests will not be sufficient to obtain your Visa.

The IELTS test is most widely accepted by universities and is also accepted for Tier 4 visas to the UK- learn more.

Similar programs:
Study mode:On campus Languages: English
Local:$ 4 k / Year(s) Foreign:$ 13.5 k / Year(s)
191 place StudyQA ranking: 3332
Study mode:On campus Languages: English
Foreign:$ 3.42 k / Year(s)
Deadline: Jan 30, 2025 351–400 place StudyQA ranking: 5006
Study mode:On campus Languages: English
Local:$ 43.2 k / Year(s) Foreign:$ 43.2 k / Year(s)
Deadline: Feb 1, 2025 124 place StudyQA ranking: 3520
Study mode:On campus Languages: English
Local:$ 7.94 k / program Foreign:$ 13.4 k / program
StudyQA ranking: 3379
Study mode:On campus Languages: English
Local:$ 48.9 k / Year(s) Foreign:$ 48.9 k / Year(s)
Deadline: Dec 31, 2024 9 place StudyQA ranking: 3148
Study mode:On campus Languages: English
Local:$ 415 / program Foreign:$ 877 / program
601–800 place StudyQA ranking: 2918
Study mode:On campus Languages: English
Local:$ 210 / Year(s) Foreign:$ 445 / Year(s)
StudyQA ranking: 2984