Physics

Study mode:On campus Study type:Full-time Languages: English
Foreign:$ 16.6 k / Semester(s) Deadline: Feb 15, 2026
StudyQA ranking:6273 Duration:48 months

Photos of university / #suffolk_U

Physics at Suffolk University offers a comprehensive and rigorous undergraduate program designed to provide students with a strong foundation in the fundamental principles of physics, complemented by practical laboratory skills and interdisciplinary applications. The curriculum is carefully structured to blend theoretical understanding with experimental techniques, preparing students for diverse career paths in science, technology, research, education, and industry. Throughout the program, students explore core subjects such as classical mechanics, electromagnetism, thermodynamics, quantum physics, and modern physics, while also gaining exposure to advanced topics like condensed matter physics and astrophysics. The curriculum emphasizes problem-solving, analytical thinking, and mathematical proficiency, enabling graduates to critically analyze complex physical systems and experimental data.

Students benefit from state-of-the-art laboratories and research facilities, fostering hands-on experience that bridges classroom theory with real-world application. The program encourages active participation in research projects, internships, and collaborations with faculty on innovative studies, helping students develop essential skills for graduate studies or employment in highly technical fields. Suffolk University’s strategic location in Boston provides unique opportunities for engagement with the local scientific and technological community, including access to conferences, seminars, and networking events with industry professionals and researchers.

The faculty members are dedicated educators and active researchers, committed to mentoring students and fostering a dynamic academic environment. The physics program also emphasizes the importance of scientific communication, critical thinking, and ethical considerations in scientific practice. Graduates of the program are well-equipped to pursue further studies in physics or related disciplines at the graduate level, or to enter careers in research, engineering, technological development, education, and more. With a flexible degree structure and a strong focus on experiential learning, the Physics program at Suffolk University prepares students to make meaningful contributions to science and society.

Detailed Course Facts

Application deadline February 15, 2015 Tuition fee
  • USD 16625 Semester (National)

Full-time: 12-17 credits per semester $16,265

Start date 2016 Credits 126 credits

Students must complete a minimum of 126 credits for graduation.

Duration full-time 48 months Languages Take an IELTS test
  • English
Delivery mode On Campus Educational variant Full-time

Course Content

Students must complete a minimum of 126 credits for graduation.

Major Requirements: 23 courses and corresponding laboratory classes, 90 credits

The department offers several programs leading to a BS, including:

  • Physics
  • Physics, with a concentration in astrophysics
  • Radiation Science

In addition, the department offers post-baccalaureate certificates in Radiation Therapy and Medical Dosimetry.

A transfer student must see the chair of the department to determine which courses may be accepted for credit toward requirements of the physics major. A minimum of 16 hours of the core requirements must be taken at Suffolk University.

Core Requirements (14 courses plus corresponding laboratory classes, 54 credits)
  • PHYS-151 University Physics I

    Prerequisites:

    Take MATH-121 or MATH 165. PHYS L151 concurrently

    Credits:

    3.00

    Description:

    Introduction to the fundamental principles of physics using calculus. The course includes the study of vectors, Newton's laws, rotations, rigid body statics and dynamics, simple harmonic motion, heat and temperature.

    Term:

    Offered Both Fall and Spring

    Type:

    NATURAL SCIENCE FOR BA BFA & BSJ,NATURAL SCIENCE FOR BS,SCI TECH ENGNR

  • PHYS-L151 University Physics Lab I

    Prerequisites:

    PHYS 151 concurrently

    Credits:

    1.00

    Description:

    The laboratory consists of experiments to illustrate the basic concepts studied in the course: measurements, propagation of errors, vectors, Newton's laws, work and energy, momentum, rotations, oscillations, simple harmonic motion, fluid. Knowledge of algebra, trigonometry, differentiation and integration required.

    Term:

    Offered Both Fall and Spring

    Type:

    NATURAL SCIENCE FOR BA BFA & BSJ,NATURAL SCIENCE FOR BS,SCI TECH ENGNR

  • PHYS-152 University Physics II

    Prerequisites:

    PHYS 151, PHYS L152 concurrently

    Credits:

    3.00

    Description:

    This calculus based course begins with topics in kinetic theory and the laws of thermodynamics. It then covers electric charge and field, Gauss' law, electrical potential and capacitance, electric currents and DC circuits. Next magnetism, electromagnetic induction, Faraday's law and AC circuits are discussed. This is followed by Maxwell's equations, electromagnetic waves, and properties of light.

    Term:

    Offered Both Fall and Spring

    Type:

    NATURAL SCIENCE FOR BA BFA & BSJ,NATURAL SCIENCE FOR BS,SCI TECH ENGNR

  • PHYS-L152 University Physics Lab II

    Prerequisites:

    PHYS 151 and L151 and PHYS 152 must be taken concurrently

    Credits:

    1.00

    Description:

    The laboratory consists of experiments to illustrate the basic concepts studied in the course: heat, gas laws, electric forces, field, and potential, DC and AC circuits, magnetic field, electromagnetic induction, Faraday's law, optics. Calculus, algebra, trigonometry are required. Error propagation, use of Excel, laboratory notebooks, and formal reports required.

    Term:

    Offered Both Fall and Spring

    Type:

    NATURAL SCIENCE FOR BA BFA & BSJ,NATURAL SCIENCE FOR BS,SCI TECH ENGNR

  • PHYS-153 University Physics III

    Prerequisites:

    Take MATH-121 or MATH-165;

    Credits:

    3.00

    Description:

    This calculus-based course is the introduction of the topics of modern physics. It begins with special relativity, the Lorentz transformation, relativistic momentum and energy, addition of relativistic velocities, then covers early quantum theory, blackbody radiation, photoelectric effect, the Compton effect, photon interactions, pair production, and the Bohr theory of the atom. Then Schrodinger's equation is introduced with use of wave functions, particle box, barrier penetration, quantum mechanical tunneling, the Pauli Exclusion principle, the development of the periodic table, and the X-ray spectra. Development of solid state physics with bonding in molecules, band theory of solids and semiconductor behavior. The final topics cover nuclear physics, radioactivity, half-life, nuclear fission and fusion, medical uses of radiation, elementary particle physics and introduction to astrophysics.

    Term:

    Offered Fall Term

    Type:

    SCI TECH ENGNR

  • PHYS-333 Math Methods of Physics

    Prerequisites:

    Take ECE-225 and ECE-L225;

    Credits:

    4.00

    Description:

    Applications of specific mathematical methods to problems in physics. Topics include complex analysis, integral transforms, eigenvalue problems, partial differential equations and group theory. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).

    Term:

    Offered Fall Term

  • PHYS-361 Classical Mechanics I

    Prerequisites:

    PHYS 152 ; MATH 265 which may be taken concurrently

    Credits:

    4.00

    Description:

    Newton's laws of motion, projectiles, momentum, energy, conservation laws, oscillations, Lagrange equations, generalized momenta, central forces, orbits. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).

    Term:

    Offered Fall Term

  • PHYS-362 Classical Mechanics II

    Prerequisites:

    PHYS 361

    Credits:

    4.00

    Description:

    Mechanics in non-inertial frames, rotational motion of rigid bodies, coupled oscillations, nonlinear mechanics and chaos, Hamiltonian mechanics, collision theory, continuum mechanics. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).

    Term:

    Offered Spring Term

  • PHYS-431 Undergraduate Research in Physics

    Credits:

    4.00

    Description:

    This course provides a mechanism for students to receive academic credit for engaging in research. A faculty member in the physics department will serve as the research advisor for each student. This faculty advisor will have the primary responsibility for overseeing each individual student's work and will decide the grade for the course. The research project may be initiated by the student or by a faculty member.

    Term:

    Offered Spring Term

  • PHYS-477 Electricity and Magnetism

    Prerequisites:

    PHYS-362

    Credits:

    4.00

    Description:

    Electrostatic field energy, methods for solution of boundary value problems. The magnetostatic field and magnetic circuits. Electromagnetic field energy, plane waves, wave guides and cavity resonators. Interaction of charge particles with electromagnetic fields. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).

    Term:

    Offered Fall Term

  • PHYS-453 Modern Physics

    Prerequisites:

    PHYS-153;

    Credits:

    4.00

    Description:

    Topics include atoms and elementary particles, atomic, molecular and nuclear systems. Quantum states and probability amplitude, wave mechanics and thermal properties of matter. Atomic spectra and structure, and molecular systems. Nuclear reactions, alpha and beta decay and high energy physics. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).

    Term:

    Offered Fall Term

  • PHYS-461 Quantum Mechanics I

    Prerequisites:

    PHYS 361 and PHYS 362.

    Credits:

    4.00

    Description:

    Non-relativistic study of particle systems, wave mechanical treatment, development of the concepts of observables, state vectors, operators and matrix representations. Hilbert space, angular momenta, coupling, symmetries, scattering, and perturbation theory. Harmonic oscillator and Hydrogen atom. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once a week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).

    Term:

    Offered Fall Term

  • PHYS-462 Quantum Mechanics II

    Prerequisites:

    PHYS 461, PHYS 361 and PHYS 362.

    Credits:

    4.00

    Description:

    Non-relativistic study of particle systems, wave mechanical treatment, development of the concepts of observables, state vectors, operators and matrix representations. Hilbert space, angular momenta, coupling, symmetries, scattering, and perturbation theory. Harmonic oscillator and Hydrogen atom. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).

    Term:

    Offered Spring Term

  • PHYS-464 Statistical Physics

    Prerequisites:

    PHYS 331, PHYS 361, PHYS 362, PHYS 461

    Credits:

    4.00

    Description:

    Macroscopic objects are made up of huge numbers of fundamental particles whose interactions are well understood. Physical properties that emerge from these interactions are, however, not simply related to these fundamental interactions. In this course we will develop the tools of statistical physics, which will allow us to predict emergent cooperative phenomena. We will apply those tools to a wide variety of physical questions, including the behavior of glasses, polymers, heat engines, magnets, and electrons in solids. Computer simulations will be extensively used to aid visualization and provide concrete realization of models in order to impart deeper understanding of statistical physics.

  • PHYS-L455 Advanced Laboratory

    Prerequisites:

    PHYS 451 and PHYS 452 or equivalent.

    Credits:

    2.00

    Description:

    Classical and modern experiments in physics; Experiments may include Frank Hertz experiment, Hall effect, nuclear magnetic resonance, quantum dots, detection of muons, x-ray spectroscopy, ellipsometry, physics of timbre of musical instruments, data acquisition.

    Term:

    Offered Fall Term

Choose 1 Physics elective.

Math and Basic Science Corequisites (9 courses plus corresponding laboratory classes, 36 credits)

Choose 2 courses and the corresponding laboratory from the following options:

  • CHEM-111 General Chemistry I

    Prerequisites:

    Placement at MATH 104 or better. Students who do not place at MATH 104 must take MATH 104 concurrently. Must be taken concurrently with CHEM-L111.

    Credits:

    3.00

    Description:

    Fundamental principles of chemistry are discussed. Topics include introductions to atomic structure, stoichiometry, the periodic table, the nature of chemical bonds, and chemical reactions. This course is recommended for science and engineering majors or those considering careers in the health sciences.

    Term:

    Offered Fall Term

    Type:

    NATURAL SCIENCE FOR BA BFA & BSJ,NATURAL SCIENCE FOR BS,SCI TECH ENGNR

  • CHEM-L111 General Chemistry I Lab

    Prerequisites:

    Must be taken concurrently with CHEM 111.

    Credits:

    1.00

    Description:

    Introduction to the basic principles of chemistry through discovery laboratory experiments. Students will be introduced to safe laboratory practices and basic techniques such as determining mass and volume, representing data in the form of tables and graphs, and synthesizing and isolating a metal complex. Workshop activities include understanding modern approaches to the scientific method, reading and understanding the scientific literature, and building molecular models. This laboratory is designed around the foundational laboratory skills practiced by science students in a wide variety of majors. 4-hour laboratory.

    Term:

    Offered Fall Term

    Type:

    NATURAL SCIENCE FOR BA BFA & BSJ,NATURAL SCIENCE FOR BS,SCI TECH ENGNR

  • CHEM-112 General Chemistry II

    Prerequisites:

    CHEM 111/L111; CHEM-L112 must be taken concurrently.

    Credits:

    3.00

    Description:

    This course is a continuation of General Chemistry I. Fundamental principles of chemistry are discussed. Topics include introductions to thermochemistry, gases, solution chemistry, chemical kinetics, chemical equilibrium, acid-base systems, and thermodynamics. Prerequisite: Satisfactory completion of CHEM 111 and CHEM L111. 3 hours of lecture 1 term - 3 credits.

    Term:

    Offered Spring Term

    Type:

    NATURAL SCIENCE FOR BA BFA & BSJ,NATURAL SCIENCE FOR BS

  • CHEM-L112 General Chemistry II Lab

    Prerequisites:

    CHEM 112 must be taken concurrently;

    Credits:

    1.00

    Description:

    This course is a continuation of General Chemistry I Lab. Students apply the basic principles of chemistry through discovery laboratory experiments. Quantitative analysis is emphasized. Students will be introduced to basic analytical techniques such as gravimetric analysis, the application of Beer's Law, and acid-base titrations. This laboratory is designed around the foundational laboratory skills practiced by science students in a wide variety of majors. 4-hour laboratory.

    Term:

    Offered Spring Term

    Type:

    NATURAL SCIENCE FOR BA BFA & BSJ,NATURAL SCIENCE FOR BS

  • BIO-111 Introduction to the Cell

    Prerequisites:

    Must take BIO L111 concurrently

    Credits:

    3.00

    Description:

    Explanation of key biological structures and reactions of the cell. This is an introductory course required of all biology majors and minors, and some non-biology science majors. This course is not recommended for the non-science student.

    Term:

    Offered Both Fall and Spring

  • BIO-L111 Introduction to the Cell Laboratory

    Prerequisites:

    Concurrently with BIO 111

    Credits:

    1.00

    Description:

    Sessions are designed to familiarize the student with biological molecules, and the techniques used in their study. The techniques covered include basic solution preparation, separation and quantification of molecules, enzyme catalysis,and cell isolation.

    Term:

    Offered Both Fall and Spring

Choose 1 Science elective (Science course 200-level or higher).

Choose the 5 courses below and the corresponding laboratory where applicable.

  • MATH-165 Calculus I

    Prerequisites:

    Math Placement score or MATH 121 with a grade of C or better

    Credits:

    4.00

    Description:

    Functions, limits and continuity; instantaneous rate of change, tangent slopes, and the definition of the derivative of a function; power, product, and quotient rules, trig derivatives, chain rule, implicit differentiation; higher order derivatives; applications(curve sketching, limits at infinity, optimization, differentials); other transcendental functions (inverse trig functions, exponential and log functions, hyperbolic trig functions); anti-derivatives; indefinite integrals; applications (net change). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.

  • MATH-166 Calculus II

    Prerequisites:

    MATH 165 with grade of C or better

    Credits:

    4.00

    Description:

    Riemann sums and definite integrals; Fundamental Theorem; applications (areas); integration of exponential functions, trig functions, and inverse trig functions; techniques of integration (by parts, trig substitution, partial fractions); area, volume, and average value applications; differential equations (separable, exponential growth, linear); infinite sequences and series; convergence tests; power series; Taylor and Maclaurin series (computation, convergence, error estimates, differentiation and integration of Taylor series). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.

  • MATH-265 Calculus III

    Prerequisites:

    MATH 166 with grade of C or better

    Credits:

    4.00

    Description:

    Parametric equations and polar coordinates (curves, areas, conic sections); vectors and the geometry of space (the dot product, vector arithmetic, lines and planes in 3-space, the cross product, cylinders and quadratic surfaces); vector functions (limits, derivatives and integrals, motion in space); partial derivatives (functions of several variables, limits and continuity, tangent planes and differentials, chain rule, directional derivatives, gradient, extrema, Lagrange multipliers); multiple integrals (double integrals, applications); vector calculus (vector fields, line integrals, fundamental theorem for line integrals, Green's Theorem, curl and divergence, parametric surfaces, surface integrals). 4 lecture hours plus 1 recitation session each week. Normally offered each semester.

  • ECE-101 Digital Electronics

    Prerequisites:

    ECE L101 MUST BE TAKEN CONCURRENTLY

    Credits:

    3.00

    Description:

    This course introduces the elements and tools of digital design. The course covers Boolean algebra, Karnaugh maps, Logic gates and digital circuits, analysis and design of combinational and sequential circuits, and timing issues. Adders, decoders, multiplexers, flip-flops, counters, and registers are implemented using TTL or CMOS ICs as well as VHDL-programmed FPGAs. Formerly ECE 203

    Term:

    Offered Fall Term

  • ECE-L101 Digital Electronics-Lab

    Prerequisites:

    ECE 101 MUST BE TAKEN CONCURRENTLY.

    Credits:

    1.00

    Description:

    Illustrates the concepts of ECE-101. Exercises in various forms of Combinational and Sequential Logic design. Use of test equipment. Design projects will include a digital security system, use of PSPICE to verify feasibility of some designs. FPGA board citing Xilinx, software development tools from Xilinx and other third parties are introduced. Offered yearly. Formerly ECE L203

    Term:

    Offered Fall Term

  • CMPSC-F131 Computer Science I

    Prerequisites:

    Must be taken concurrently with CMPSC R131

    Credits:

    4.00

    Description:

    This is a rigorous introduction to computer science in Java with an emphasis on problem solving, structured programming, object-oriented programming, and graphical user interfaces. Topics include expressions, input/output, control structures, intrinsic data types, classes and methods, iteration, top-down programming, arrays, graphical user interfaces, and elements of UML. Normally offered each semester.

    Type:

    Quantitative Reasoning

Choose 1 of the following courses and corresponding laboratory if applicable:

  • ENS-333 Programming for Engineers

    Prerequisites:

    ENS L333 concurrently

    Credits:

    3.00

    Description:

    This course will introduce programming concepts in the context of solving engineering problems. Emphasis will be placed on applying the high-level programming skills learned to particular platforms such as embedded systems. Students will implement various microcontroller programming exercises as well as an end of the semester project.

    Term:

    Offered Spring Term

  • ENS-L333 Programming for Engineers Lab

    Prerequisites:

    ENS 333 concurrently

    Credits:

    1.00

    Description:

    The Programming for Engineers lab is designed to supplement the Programming for Engineers Course.

  • CMPSC-F132 Computer Science II

English Language Requirements

TOEFL paper-based test score : 550 TOEFL iBT® test : 77

To study at this university, you have to speak English. We advice you to

take an IELTS test. More About IELTS

Requirements

We do not use specific minimums for scores or grades in the decision process, but weigh all factors together to gain a whole view of you and your potential for success as a Suffolk University student:

  • Level and range of high school courses selected
  • Grades achieved (official high school transcript with senior year grades)
  • SAT or ACT scores (our code is 3771)
  • Recommendations (two required; one from a guidance counselor, one from a teacher)
  • The essay
  • Other required forms
  • Admission interview (optional)
  • Transfer students should view the transfer requirements page for more details.

In high school, you should have completed:

  • Four units of English
  • Three units of mathematics (algebra I and II and geometry)
  • Two units of science (at least one with a lab)
  • Two units of language
  • One unit of American history
  • Four units distributed among other college preparatory electives

We may also consider other factors in the review process, such as:

  • Class rank
  • Honors courses
  • AP courses

We are also very interested in personal qualities that will offer us further insights into you as an applicant, including:

  • Admission interview
  • Extracurricular involvement
  • Community service
  • Special interests

Work Experience

No work experience is required.

Related Scholarships*

  • Academic Excellence Scholarship

    "The Academic Excellence Scholarship can provide up to a 50 % reduction in tuition per semester. These scholarships will be renewed if the student maintains superior academic performance during each semester of their 3-year Bachelor programme. The scholarship will be directly applied to the student’s tuition fees."

  • Alumni Study Travel Fund

    Scholarships for students who are already attending the University of Reading.

  • Amsterdam Merit Scholarships

    The University of Amsterdam aims to attract the world’s brightest students to its international classrooms. Outstanding students from outside the European Economic Area can apply for an Amsterdam Merit Scholarship.

* The scholarships shown on this page are suggestions first and foremost. They could be offered by other organisations than Suffolk University.

Physics at Suffolk University offers a comprehensive exploration of the fundamental principles governing the universe, blending theoretical knowledge with practical laboratory skills. The program is designed to prepare students for diverse careers in science, technology, engineering, and education, as well as for further graduate studies. Students will engage with foundational topics such as classical mechanics, electromagnetism, thermodynamics, quantum mechanics, and modern physics. The curriculum emphasizes critical thinking, problem-solving, and quantitative analysis, enabling graduates to analyze complex physical systems and adapt to technological advancements.

Students have the opportunity to participate in research projects under the guidance of faculty members who are experts in their fields. The program also promotes interdisciplinary learning, encouraging students to integrate knowledge from mathematics, computer science, and engineering to solve real-world problems. Laboratory work is a significant component, providing hands-on experience in experimental techniques, data analysis, and the use of contemporary scientific equipment.

Beyond classroom instruction, Suffolk University offers various seminars, workshops, and collaborations with local industries and institutions to enhance experiential learning. The program aims to develop not only scientific knowledge but also essential skills such as communication, teamwork, and ethical reasoning. Graduates of the Physics program often pursue careers in research, education, data analysis, engineering, and technology sectors, or continue their education at the graduate level. The university emphasizes providing a supportive learning environment with accessible faculty, modern facilities, and opportunities for engagement in scientific communities. Overall, Suffolk’s Physics program strives to cultivate inquisitive, skilled scientists ready to contribute to innovations in science and technology.

Similar programs:
Study mode:On campus Languages: English
Local:$ 13.7 k / Year(s) Foreign:$ 28 k / Year(s)
StudyQA ranking: 5094
Study mode:On campus Languages: English
Foreign:$ 30 k / Year(s)
Deadline: Jan 1, 2026 38 place StudyQA ranking: 6733
Study mode:On campus Languages: English
Local:$ 282 / program Foreign:$ 735 / program
601–800 place StudyQA ranking: 5377
Study mode:On campus Languages: English
Local:$ 60.1 k / Year(s) Foreign:$ 60.1 k / Year(s)
Deadline: Jan 1, 2026 9 place StudyQA ranking: 5554
Study mode:On campus Languages: English
Local:$ 4.07 k / Year(s) Foreign:$ 14 k / Year(s)
Deadline: Feb 1, 2026 251–300 place StudyQA ranking: 5087
Study mode:On campus Languages: English
Local:$ 41.2 k / Year(s) Foreign:$ 41.2 k / Year(s)
Deadline: Feb 1, 2026 StudyQA ranking: 5753
Study mode:On campus Languages: English
Local:$ 8.4 k / Year(s) Foreign:$ 18 k / Year(s)
StudyQA ranking: 4762
Study mode:On campus Languages: English
Local:$ 13.7 k / Year(s) Foreign:$ 28 k / Year(s)
StudyQA ranking: 5285